At first glance, artificial intelligence (AI) can seem like an impenetrable subject, but workers must have a say in how AI is used at work. If this is left to bosses and tech companies, workers’ rights and interests will be overlooked.
Recruitment and management by AI is increasingly common in workplaces across the country. The price of this can be discrimination, overwork and invasion of privacy. These issues demand urgent attention.
Artificial intelligence (AI) means when computers carry out tasks that you would usually expect to be completed by a human. For example, making decisions or recognising objects, speech and sounds.
AI is increasingly being used to automate management functions, making many important decisions about people at work.
It might be helpful to think of AI as a system with different components.1 These components, explained further below, include:
TIP Remember that artificial ‘intelligence’ isn’t always intelligent – AI can be flawed, just like a human being |
Data is like the fuel for AI. Data is used to train the algorithms used in AI systems and to enable predictive models to be developed by picking up patterns in the data
TIP AI systems can go wrong if inaccurate or incomplete data is used. Technologists play a key role in whether or not the correct data is used |
Once the AI system is complete and an AI-powered tool is operating, it will then use data in a different way. This is when the AI system processes data in real time, eg data about performance at work, and makes decisions based on that information. As you can see, data is the foundation of AI.
Machine learning is when computer programmes are trained on data and learn to carry out tasks (like making decisions), based on patterns in the data.
The conclusions that can be drawn from these data patterns are called predictive models. Predictive models are generated by machine learning using historic data. These models enable AI decision-making.
An algorithm is a mathematical rule. Algorithms are used in many different contexts. Algorithms used in technology are often a set of rules applied by a computer to come to a decision.
The AI value chain is the term used to describe the different stages in the creation and application of AI. These stages include:
Key actors in the AI value chain include technologists (developers/coders/software engineers), tech companies and employers.
There are usually two ‘users’ of the technology – the employer and the worker. AI can also be used to monitor the action and movements of service users such as students in universities or patients accessing health services.
TIP Consider how unions and workers can influence the different components of AI, and each stage of the AI value chain. |
AI is used to manage people at all stages of the employment relationship. For example, AI is being used to hire people, to line-manage them and to make decisions about dismissal.2
Management by AI has long been on the rise in platform work (where workers use an online platform to access work). It has now spread into many different sectors and workplaces, accelerated by the coronavirus pandemic and increase in remote working.3
TIP AI might be operating at work through, for example, a CCTV camera or webcam, on a laptop, a mobile phone, a portable fitness or location tracker, a health monitor, a personal computer or tablet. |
These are some of the management functions that AI might be fulfilling in your workplace:
Deciding who gets access to work on an online platform or app (a small software programme often downloaded onto a mobile device), and who is offered a job.
Tracking physical movement of workers – tracking location and monitoring body movements
Monitoring keyboard activity, tone of voice and expressions, logging time taken to complete tasks or time at work, monitoring error rates, setting productivity rates, and allocating grades/ratings for performance.
Assessing emotions, monitoring sleep and collecting and assessing health data.
Allocating tasks, deciding on teams and dictating how and when work is completed
Triggering disciplinary and capability procedures.
Providing, allocating and assessing training.
Terminating employment – dismissal, making a redundancy selection, withdrawing access to a platform or app.
AI might even be used by employers to monitor union activity and put together a union profile. For example, AI might be used to analyse information such as the location of union offices, the activity of union officials, the use of union-related vocabulary in emails, and even union activity on social media.
TIP Think of all the functions of a manager. There is probably an AI-powered tool on the market for almost every function you list. |
AI at work can result in various problems for workers and unions:
Workers might not be aware when AI is being used to make important decisions about them or be asked for their consent beforehand.
Understandable information about how the technology works and how it has been applied to individuals may not be available.
Low levels of consultation before AI is introduced at work results in lack of trust in the technology and increased likelihood of things going wrong.
Workers and their representatives may have difficulty challenging decisions made by AI, especially if they do not understand how the technology operates and cannot access information.
If the data used to train algorithms is inaccurate or flawed, the AI might go wrong, producing unfair and even dangerous decisions.
Workers have little control over, or knowledge about, their own data and how this is used at work. This data could include, for example, information about their pay, hours of work, performance, productivity and absence records. This lack of control over data means that workers cannot use the information to gain important insights into their working lives.
For example, if workers could pool information about pay and hours of work, they might gain insights into whether or not there is equal pay between men and women in their workplace, whether they are receiving the national minimum wage and gain information that could be used in trade union campaigning.
AI can produce very unfair results for workers. This can include discrimination, inaccurate ratings, unjustified sanctions and even unfair dismissal. There is a danger that left unchecked and directed only by employers and commercial interests, AI at work will entrench existing inequalities and systems of control. This is because of the way in which AI tends to repeat existing human bias shown in the data that is being processed.
TIP Workers might experience unfairness at work, but not realise that AI is the cause – often the role of AI in decision-making is hidden. Not only this, but the decision might be based on irrelevant or unfair requirements that the worker cannot challenge or does not know about. |
DiscriminationSome examples of how AI might discriminate:
|
AI can be used to allocate work and optimise efficiency, but without proper safeguards can impose unreasonable targets and result in unsafe working conditions.
Targets set by AI might not take into account basic human needs like toilet and rest breaks, or even the freedom to move and think without being tracked and monitored.
Constant monitoring, unreasonable targets, a lack of human connection and freedom can cause workers stress and unhappiness and take a toll on their mental and physical health.
Remote working, portable devices (such as mobile phones and tablets), wearable devices (that may, for example, track location, monitor muscle movements, emotions and state of health) have all resulted in work-related AI being present not only in the workplace, but in our homes as well. This can result in invasions of privacy and home-life, as well as an always-on culture in which working hours cease to have boundaries.
Invasions of PrivacyWorkers report monitoring of their activities while they are working from home: “It was creepy,” says Chris. “One of my managers was watching people’s personal computers to monitor what we were doing at home – all the time, not just when we were working. It was a bizarre way to carry on.” |
AI can facilitate insecure and low paid work, in particular work through platforms. Data analytics, for example, used for scheduling purposes combining sales data with workforce data, could be used to allocate work in such a way that full-time, well-paid work is eliminated. Similarly, platform work can facilitate the allocation of ‘gig’ work on a one-off basis, undermining secure employment.
Using AI to manage people can result in less contact between workers, managers and union reps, leading to weaker ties and human relationships, along with a sense of isolation and loneliness.
AI that is being used to monitor service users such as students or patients could damage the relationship of trust workers build with those they support, which can make it more difficult for them to do their jobs.
The growth of AI requires unions to provide new forms of training, education and collaboration to ensure that reps and workers can communicate about and understand AI.
AI can be used to monitor and suppress collective action.
The use of AI to manage people can disrupt established relationships and communication channels between union reps and human managers.
Remote management may also change the structure of the workplace. It is harder for unions to contact workers if they are no longer in a central workplace.
As well as problems, AI also presents great opportunities for unions and workers.
Unions and workers could develop AI-powered tools that help evidence trade union campaigning for better terms and conditions at work or identify bias and discrimination.
Worker AIWeClock is a self-tracking app that collects data about your working life so that you can use it to challenge unreal expectations, the ‘constant on’ culture, lack of time off and other forms of unfairness at work. Read more about WeClock |
This new age of work presents an opportunity for unions to reach new groups of people through collaboration. Collaborating with technologists is of particular importance.
AI can offer unions insights and tools to assist with recruitment and organising of members.
Recruiting technologists is a crucial step towards ensuring more understanding of technology within trade unions, but also ensuring that worker voice and worker interests are recognised in the workplaces where technology is being developed. This in turn should contribute towards more ethical technology.
TIP Think about how pooling worker data on subjects like pay, commuting time, hours of work, overtime, could help union campaigning. |
There are many different options open to unions when it comes to dealing with the problems caused by AI. Here are some possibilities.
TIP To be effective in influencing the different stages of the AI value chain, union reps need in–depth training. |
Negotiate collective agreements with provisions on the use of AI to recruit and manage people at work. The TUC’s AI manifesto 4 sets out values (part 1) and proposals (part 2) that may be of use in collective bargaining.
TIP There are not yet many examples of collective agreements with provisions on management by AI, but the CWU has negotiated an agreement with the Royal Mail Group with provisions on management by technology – look in the Further Reading section of this guide. Think about terms that could keep humans in the decision-making process, prevent work intensification, secure a right to trial, stop unfair decision-making, protect union/employer relationships, and ensure everyone understands how the tech works. |
Provide timely legal advice and assistance to members if they have been subject to unfairness by an AI system, in order that workers can potentially access compensation or other forms of redress for harms caused by AI.
Depending on the circumstances, these legal issues may be relevant:
TIP If a union member has been subject to unfairness by an AI system, there might be a potential legal claim on which the worker needs timely legal advice. |
Provide training programmes for reps, union officials and workers.
Collaborate with employers, technologists, academics, regulators and others.
Work with other stakeholders to agree a set of employment-focused ethical principles in the form of comprehensive and practical guidelines, to normalise ethical behaviour and agree acceptable uses of AI.
Our vision is of a world of work where technology works for everyone, not just employers and big tech companies. Working together, we hope that we can ensure worker interests are taken into account in the development and application of technology at work, and that workers gain a fair share in the rewards of innovation.
Reform
Research
The law
Collective agreements
Union guidance
Innovation
Data protection impact assessments
Equality impact assessments
Annex
Want to hear about our latest resources for union reps?
Sign up now to get it straight to your inbox
To access the admin area, you will need to setup two-factor authentication (TFA).